
16

Patterns of Algorithms

This chapter talks about some fundamental patterns of algorithms. We discuss
greed algorithms, dynamic programming, randomized algorithms, numerical algo-
rithms, and the concept of a transform.

Section 16.3.1 presents the Skip List, a probabilistic data structure that can be
used to implement the dictionary ADT. The Skip List is comparable in complexity
to the BST, yet often outperforms the BST, because the Skip List’s efficiency is not
tied to the values of the dataset being stored.

16.1 Greedy Algorithms

Observe that the following are all greedy algorithms (that work!): Kruskal’s MST,
Prim’s MST, Dijkstra’s shortest paths, Huffman’s coding algorithm. Various greedy
knapsack algorithms, such as Continuous-knapsack problem (see Johnsonbaugh
and Schaefer, Sec 7.6).

Could consider greedy algorithms as approximation algorithms for coping with
NP comleteness and optimization.

See Papadimitriou and steighlitz, Computational Optimization: Algorithms and
Complexity, Prentice Hall, 1982, for more information on greedy algorithms.

See the treatment by Kleinberg & Tardos.
Consider that a heap has a “greedy” definition: The value of any node A is

bigger than its children. The BST’s definition is that the value of any node A is
greater than all nodes in the left subtree, and less than all nodes in the right subtree.
If we try a greedy definition (A is greater than its left child and less than its right
child), we can get a tree that meets this definition but is not a BST. See the example
in Section 5.2.

529

530 Chap. 16 Patterns of Algorithms

16.2 Dynamic Programming

Consider again the recursive function for computing the nth Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

The cost of this algorithm (in terms of function calls) is the size of the nth Fi-
bonocci number itself, which our analysis showed to be exponential (approximately
n1.62) Why is this so expensive? It is expensive primarily because two recursive
calls are made by the function, and they are largely redundant. That is, each of the
two calls is recomputing most of the series, as is each sub-call, and so on. Thus,
the smaller values of the function are being recomputed a huge number of times. If
we could eliminate this redundancy, the cost would be greatly reduced.

One way to accomplish this goal is to keep a table of values, and first check the
table to see if the computation can be avoided. Here is a straightforward example
of doing so.

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] != 0) return Values[n];
Values[n] = Fibr(n-1, Values) + Fibr(n-2, Values);
return Values[n];

}

This version of the algorithm will not compute a value more than once, so its
cost should be linear. Of course, we didn’t actually need to use a table. Instead, we
could build the value by working from 0 and 1 up to n rather than backwards from
n down to 0 and 1. Going up from the bottom we only need to store the previous
two values of the function, as is done by our iterative version.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value

past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

Sec. 16.2 Dynamic Programming 531

This issue of recomputing subproblems comes up frequently. In many cases,
arbitrary subproblems (or at least a wide variety of subproblems) might need to be
recomputed, so that storing subresults in a fixed number of variables will not work.
Thus, there are many times where storing a table of subresults can be useful.

This approach to designing an algorithm that works by storing a table of results
for subproblems is called dynamic programming. The name is somewhat arcane,
because it doesn’t bear much obvious similarity to the process that is taking place
of storing subproblems in a table. However, it comes originally from the field of
dynamic control systems, which got its start before what we think of as computer
programming. The act of storing precomputed values in a table for later reuse is
referred to as “programming” in that field.

Dynamic programming is a powerful alternative to the standard principle of
divide and conquer. In divide and conquer, a problem is split into subproblems,
the subproblems are solved (independently), and the recombined into a solution
for the problem being solved. Dynamic programming is appropriate whenever the
subproblems to be solved are overlapping in some way. Whenever this happens,
dynamic programming can be used if we can find a suitable way of doing the neces-
sary bookkeeping. Dynamic programming algorithms are usually not implemented
by simply using a table to store subproblems for recursive calls (i.e., going back-
wards as is done by Fibrt). Instead, such algorithms more typically implemented
by building the table of subproblems from the bottom up. Thus, Fibi is actually
closer in spirit to dynamic programming than is Fibrt even though it doesn’t need
the actual table.

16.2.1 Knapsack Problem

Knapsack problem: Given an integer capacity K and n items such that item i
has integer size ki, find a subset of the n items whose sizes exactly sum to K,
if possible. Formally: Find S ⊂ {1, 2, ..., n} such that∑

i∈S
ki = K.

Example: K = 163 10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101. What
if K is 164?

Instead of parameterizing problem just by n, parameterize with n andK. P (n,K)
is the problem with n items and capacity K.

Think about divide and conquer (alternatively, induction). What if we know
how to solve P (n− 1,K)? If P (n− 1,K) has a solution, then it is a solution for
P (n,K). Otherwise, P (n,K) has a solution⇔ P (n− 1,K − kn) has a solution.

532 Chap. 16 Patterns of Algorithms

What if we know how to solve P (n − 1, k) for 0 ≤ k ≤ K? Cost: T (n) =
2T (n− 1) + c. T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to solve! Clearly, there are many
subproblems being solved repeatedly. Store a n × K + 1 matrix to contain the
solutions for all P (i, k). Fill in the rows from i = 0 to n, left to right.

If P (n− 1,K) has a solution,
Then P (n,K) has a solution
Else If P (n− 1,K − kn) has a solution

Then P (n,K) has a solution
Else P (n,K) has no solution.

Cost: Θ(nK).

Example 16.1 Knapsack Example: K = 10. Five items: 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 =9 O − − − − − − − − I −
k2 =2 O − I − − − − − − O −
k3 =7 O − O − − − − I − I/O −
k4 =4 O − O − I − I O − O −
k5 =1 O I O I O I O I/O I O I

Key:
-: No solution for P (i, k).
O: Solution(s) for P (i, k) with i omitted.
I: Solution(s) for P (i, k) with i included.
I/O: Solutions for P (i, k) with i included AND omitted.

Example: M(3, 9) contains O because P (2, 9) has a solution. It con-
tains I because P (2, 2) = P (2, 9 − 7) has a solution. How can we find a
solution to P (5, 10)? How can we find ALL solutions to P (5, 10)?

16.2.2 All-Pairs Shortest Paths

We next consider the problem of finding the shortest distance between all pairs of
vertices in the graph, called the all-pairs shortest-paths problem. To be precise,
for every u, v ∈ V, calculate d(u, v).

One solution is to run Dijkstra’s algorithm |V| times, each time computing the
shortest path from a different start vertex. If G is sparse (that is, |E| = Θ(|V|)) then
this is a good solution, because the total cost will be Θ(|V|2 + |V||E| log |V|) =
Θ(|V|2 log |V|) for the version of Dijkstra’s algorithm based on priority queues.

Sec. 16.2 Dynamic Programming 533

∞

1 7

4
5 3

1122

12

∞
0

1

3∞

∞

Figure 16.1 An example of k-paths in Floyd’s algorithm. Path 1, 3 is a 0-path
by definition. Path 3, 0, 2 is not a 0-path, but it is a 1-path (as well as a 2-path, a
3-path, and a 4-path) because the largest intermediate vertex is 0. Path 1, 3, 2 is
a 4-path, but not a 3-path because the intermediate vertex is 3. All paths in this
graph are 4-paths.

For a dense graph, the priority queue version of Dijkstra’s algorithm yields a cost
of Θ(|V|3 log |V|), but the version using MinVertex yields a cost of Θ(|V|3).

Another solution that limits processing time to Θ(|V|3) regardless of the num-
ber of edges is known as Floyd’s algorithm. Define a k-path from vertex v to
vertex u to be any path whose intermediate vertices (aside from v and u) all have
indices less than k. A 0-path is defined to be a direct edge from v to u. Figure 16.1
illustrates the concept of k-paths.

Define Dk(v, u) to be the length of the shortest k-path from vertex v to vertex u.
Assume that we already know the shortest k-path from v to u. The shortest (k+1)-
path either goes through vertex k or it does not. If it does go through k, then
the best path is the best k-path from v to k followed by the best k-path from k
to u. Otherwise, we should keep the best k-path seen before. Floyd’s algorithm
simply checks all of the possibilities in a triple loop. Here is the implementation
for Floyd’s algorithm. At the end of the algorithm, array D stores the all-pairs
shortest distances.

534 Chap. 16 Patterns of Algorithms

// Compute all-pairs shortest paths
static void Floyd(Graph G, int[][] D) {

for (int i=0; i<G.n(); i++) // Initialize D with weights
for (int j=0; j<G.n(); j++)

D[i][j] = G.weight(i, j);
for (int k=0; k<G.n(); k++) // Compute all k paths

for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); j++)

if ((D[i][k] != Integer.MAX VALUE) &&
(D[k][j] != Integer.MAX VALUE) &&
(D[i][j] > (D[i][k] + D[k][j])))

D[i][j] = D[i][k] + D[k][j];
}

Clearly this algorithm requires Θ(|V|3) running time, and it is the best choice
for dense graphs because it is (relatively) fast and easy to implement.

16.3 Randomized Algorithms

What if we settle for the “approximate best?” Types of guarentees, given that the
algorithm produces X and the best is Y :

1. X = Y .
2. X’s rank is “close to” Y ’s rank:

rank(X) ≤ rank(Y) + “small”.

3. X is “usually” Y .
P(X = Y) ≥ “large”.

4. X’s rank is “usually” “close” to Y ’s rank.

We often give such algorithms names:

1. Exact or deterministic algorithm.
2. Approximation algorithm.
3. Probabilistic algorithm.
4. Heuristic.

We can also sacrifice reliability for speed:

1. We find the best, “usually” fast.
2. We find the best fast, or we don’t get an answer at all (but fast).

Choose m elements at random, and pick the best.

• For large n, if m = log n, the answer is pretty good.
• Cost is m− 1.

Sec. 16.3 Randomized Algorithms 535

• Rank is mn
m+1 .

Probabilistic algorithms include steps that are affected by random events.
Problem: Pick one number in the upper half of the values in a set. Pick maxi-

mum: n− 1 comparisons. Pick maximum from just over 1/2 of the elements: n/2
comparisons. Can we do better? Not if we want a guarantee.

Probablilistic algorithm: Pick 2 numbers and choose the greater. This will be
in the upper half with probability 3/4. Not good enough? Pick more numbers! For
k numbers, greatest is in upper half with probability 1− 2−k.

Monte Carlo Algorithm: Good running time, result not guaranteed. Las Vegas
Algorithm: Result guaranteed, but not the running time.

Prime numbers: How do we tell if a number is prime? One approach is the
prime sieve: Test all prime up to b

√
nc. This requires up to b

√
nc − 1 divisions.

How does this compare to the input size?
Note that it is easy to check the number of times 2 divides n for the binary

representation What about 3? What if n is represented in trinary?
Is there a polynomial time algorithm for finding primes?
Some useful theorems from Number Theory: Prime Number Theorem: The

number of primes less than n is (approximately)

n

lnn

The average distance between primes is lnn. Prime Factors Distribution The-
orem: For large n, on average, n has about ln lnn different prime factors with a
standard deviation of

√
ln lnn.

To prove that a number is composite, need only one factor. What does it take
to prove that a number is prime? Do we need to check all

√
n candidates?

Some probablistic algorithms:
• Prime(n) = FALSE.
• With probability 1/ lnn, Prime(n) = TRUE.
• Pick a number m between 2 and

√
n. Say n is prime iff m does not divide n.

Using number theory, we can create a cheap test that will determine that a
number is composite (if it is) 50% of the time. Algorithm:

Prime(n) {
for(i=0; i<COMFORT; i++)

if !CHEAPTEST(n)
return FALSE;

return TRUE;
}

536 Chap. 16 Patterns of Algorithms

Of course, this does nothing to help you find the factors!

16.3.1 Skip Lists

Skip Lists are designed to overcome a basic limitation of array-based and linked
lists: Either search or update operations require linear time. The Skip List is an
example of a probabilistic data structure, because it makes some of its decisions
at random.

Skip Lists provide an alternative to the BST and related tree structures. The pri-
mary problem with the BST is that it may easily become unbalanced. The 2-3 tree
of Chapter 10 is guaranteed to remain balanced regardless of the order in which data
values are inserted, but it is rather complicated to implement. Chapter 13 presents
the AVL tree and the splay tree, which are also guaranteed to provide good per-
formance, but at the cost of added complexity as compared to the BST. The Skip
List is easier to implement than known balanced tree structures. The Skip List is
not guaranteed to provide good performance (where good performance is defined
as Θ(log n) search, insertion, and deletion time), but it will provide good perfor-
mance with extremely high probability (unlike the BST which has a good chance
of performing poorly). As such it represents a good compromise between difficulty
of implementation and performance.

Figure 16.2 illustrates the concept behind the Skip List. Figure 16.2(a) shows a
simple linked list whose nodes are ordered by key value. To search a sorted linked
list requires that we move down the list one node at a time, visiting Θ(n) nodes
in the average case. Imagine that we add a pointer to every other node that lets us
skip alternating nodes, as shown in Figure 16.2(b). Define nodes with only a single
pointer as level 0 Skip List nodes, while nodes with two pointers are level 1 Skip
List nodes.

To search, follow the level 1 pointers until a value greater than the search key
has been found, then revert to a level 0 pointer to travel one more node if necessary.
This effectively cuts the work in half. We can continue adding pointers to selected
nodes in this way — give a third pointer to every fourth node, give a fourth pointer
to every eighth node, and so on — until we reach the ultimate of log n pointers in
the first and middle nodes for a list of n nodes as illustrated in Figure 16.2(c). To
search, start with the bottom row of pointers, going as far as possible and skipping
many nodes at a time. Then, shift up to shorter and shorter steps as required. With
this arrangement, the worst-case number of accesses is Θ(log n).

To implement Skip Lists, we store with each Skip List node an array named
forward that stores the pointers as shown in Figure 16.2(c). Position forward[0]
stores a level 0 pointer, forward[1] stores a level 1 pointer, and so on. The Skip

Sec. 16.3 Randomized Algorithms 537

head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

Figure 16.2 Illustration of the Skip List concept. (a) A simple linked list.
(b) Augmenting the linked list with additional pointers at every other node. To
find the node with key value 62, we visit the nodes with values 25, 31, 58, and 69,
then we move from the node with key value 58 to the one with value 62. (c) The
ideal Skip List, guaranteeing O(log n) search time. To find the node with key
value 62, we visit nodes in the order 31, 69, 58, then 69 again, and finally, 62.

List class definition includes data member level that stores the highest level for
any node currently in the Skip List. The Skip List is assumed to store a header node
named head with level pointers. The find function is shown in Figure 16.3.

Searching for a node with value 62 in the Skip List of Figure 16.2(c) begins at
the header node. Follow the header node’s pointer at level, which in this example
is level 2. This points to the node with value 31. Because 31 is less than 62, we
next try the pointer from forward[2] of 31’s node to reach 69. Because 69 is
greater than 62, we cannot go forward but must instead decrement the current level
counter to 1.

538 Chap. 16 Patterns of Algorithms

public E find(K searchKey) { // Skiplist Search
SkipNode<K,E> x = head; // Dummy header node
for (int i=level; i>=0; i--) // For each level...

while ((x.forward[i] != null) && // go forward
(searchKey.compareTo(x.forward[i].key()) > 0))

x = x.forward[i]; // Go one last step
x = x.forward[0]; // Move to actual record, if it exists
if ((x != null) && (searchKey.compareTo(x.key()) == 0))

return x.element(); // Got it
else return null; // Its not there

}
Figure 16.3 Implementation for the Skip List find function.

We next try to follow forward[1] of 31 to reach the node with value 58. Be-
cause 58 is smaller than 62, we follow 58’s forward[1] pointer to 69. Because
69 is too big, follow 58’s level 0 pointer to 62. Because 62 is not less than 62, we
fall out of the while loop and move one step forward to the node with value 62.

The ideal Skip List of Figure 16.2(c) has been organized so that (if the first and
last nodes are not counted) half of the nodes have only one pointer, one quarter
have two, one eighth have three, and so on. The distances are equally spaced; in
effect this is a “perfectly balanced” Skip List. Maintaining such balance would be
expensive during the normal process of insertions and deletions. The key to Skip
Lists is that we do not worry about any of this. Whenever inserting a node, we
assign it a level (i.e., some number of pointers). The assignment is random, using
a geometric distribution yielding a 50% probability that the node will have one
pointer, a 25% probability that it will have two, and so on. The following function
determines the level based on such a distribution:

/** Pick a level using exponential distribution */
int randomLevel() {

int lev;
for (lev=0; DSutil.random(2) == 0; lev++); // Do nothing
return lev;

}

Once the proper level for the node has been determined, the next step is to find
where the node should be inserted and link it in as appropriate at all of its levels.
Figure 16.4 shows an implementation for inserting a new value into the Skip List.

Figure 16.5 illustrates the Skip List insertion process. In this example, we
begin by inserting a node with value 10 into an empty Skip List. Assume that
randomLevel returns a value of 1 (i.e., the node is at level 1, with 2 pointers).
Because the empty Skip List has no nodes, the level of the list (and thus the level
of the header node) must be set to 1. The new node is inserted, yielding the Skip
List of Figure 16.5(a).

Sec. 16.3 Randomized Algorithms 539

/** Insert a record into the skiplist */
public void insert(K k, E newValue) {

int newLevel = randomLevel(); // New node’s level
if (newLevel > level) // If new node is deeper

AdjustHead(newLevel); // adjust the header
// Track end of level
SkipNode<K,E>[] update =

(SkipNode<K,E>[])new SkipNode[level+1];
SkipNode<K,E> x = head; // Start at header node
for (int i=level; i>=0; i--) { // Find insert position

while((x.forward[i] != null) &&
(k.compareTo(x.forward[i].key()) > 0))

x = x.forward[i];
update[i] = x; // Track end at level i

}
x = new SkipNode<K,E>(k, newValue, newLevel);
for (int i=0; i<=newLevel; i++) { // Splice into list

x.forward[i] = update[i].forward[i]; // Who x points to
update[i].forward[i] = x; // Who y points to

}
size++; // Increment dictionary size

}
Figure 16.4 Implementation for the Skip List Insert function.

Next, insert the value 20. Assume this time that randomLevel returns 0. The
search process goes to the node with value 10, and the new node is inserted after,
as shown in Figure 16.5(b). The third node inserted has value 5, and again assume
that randomLevel returns 0. This yields the Skip List of Figure 16.5.c.

The fourth node inserted has value 2, and assume that randomLevel re-
turns 3. This means that the level of the Skip List must rise, causing the header
node to gain an additional two (null) pointers. At this point, the new node is
added to the front of the list, as shown in Figure 16.5(d).

Finally, insert a node with value 30 at level 2. This time, let us take a close
look at what array update is used for. It stores the farthest node reached at each
level during the search for the proper location of the new node. The search pro-
cess begins in the header node at level 3 and proceeds to the node storing value 2.
Because forward[3] for this node is null, we cannot go further at this level.
Thus, update[3] stores a pointer to the node with value 2. Likewise, we cannot
proceed at level 2, so update[2] also stores a pointer to the node with value 2.
At level 1, we proceed to the node storing value 10. This is as far as we can go
at level 1, so update[1] stores a pointer to the node with value 10. Finally, at
level 0 we end up at the node with value 20. At this point, we can add in the new
node with value 30. For each value i, the new node’s forward[i] pointer is

540 Chap. 16 Patterns of Algorithms

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

Figure 16.5 Illustration of Skip List insertion. (a) The Skip List after inserting
initial value 10 at level 1. (b) The Skip List after inserting value 20 at level 0.
(c) The Skip List after inserting value 5 at level 0. (d) The Skip List after inserting
value 2 at level 3. (e) The final Skip List after inserting value 30 at level 2.

Sec. 16.4 Numerical Algorithms 541

set to be update[i]->forward[i], and the nodes stored in update[i] for
indices 0 through 2 have their forward[i] pointers changed to point to the new
node. This “splices” the new node into the Skip List at all levels.

The remove function is left as an exercise. It is similar to inserting in that the
update array is built as part of searching for the record to be deleted; then those
nodes specified by the update array have their forward pointers adjusted to point
around the node being deleted.

A newly inserted node could have a high level generated by randomLevel,
or a low level. It is possible that many nodes in the Skip List could have many
pointers, leading to unnecessary insert cost and yielding poor (i.e., Θ(n)) perfor-
mance during search, because not many nodes will be skipped. Conversely, too
many nodes could have a low level. In the worst case, all nodes could be at level 0,
equivalent to a regular linked list. If so, search will again require Θ(n) time. How-
ever, the probability that performance will be poor is quite low. There is only once
chance in 1024 that ten nodes in a row will be at level 0. The motto of probabilistic
data structures such as the Skip List is “Don’t worry, be happy.” We simply accept
the results of randomLevel and expect that probability will eventually work in
our favor. The advantage of this approach is that the algorithms are simple, while
requiring only Θ(log n) time for all operations in the average case.

In practice, the Skip List will probably have better performance than a BST. The
BST can have bad performance caused by the order in which data are inserted. For
example, if n nodes are inserted into a BST in ascending order of their key value,
then the BST will look like a linked list with the deepest node at depth n− 1. The
Skip List’s performance does not depend on the order in which values are inserted
into the list. As the number of nodes in the Skip List increases, the probability of
encountering the worst case decreases geometrically. Thus, the Skip List illustrates
a tension between the theoretical worst case (in this case, Θ(n) for a Skip List
operation), and a rapidly increasing probability of average-case performance of
Θ(log n), that characterizes probabilistic data structures.

16.4 Numerical Algorithms

Examples of problems:

• Raise a number to a power.
• Find common factors for two numbers.
• Tell whether a number is prime.
• Generate a random integer.
• Multiply two integers.

542 Chap. 16 Patterns of Algorithms

These operations use all the digits, and cannot use floating point approximation.
For large numbers, cannot rely on hardware (constant time) operations. Measure
input size by number of binary digits. Multiply, divide become expensive.

Analysis problem: Cost may depend on properties of the number other than
size. It is easy to check an even number for primeness.

If you consider the cost over all k-bit inputs, cost grows with k. Features:
• Arithmetical operations are not cheap.
• There is only one instance of value n.
• There are 2k instances of length k or less.
• The size (length) of value n is log n.
• The cost may decrease when n increases in value, but generally increases

when n increases in size (length).

16.4.1 Exponentiation

How do we compute mn? We could multiply n − 1 times. Can we do better?
Approaches to divide and conquer:
• Relate mn to kn for k < m.
• Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2. If n is odd, then mn = mbn/2cmbn/2cm.

Power(base, exp) {
if exp = 0 return 1;
half = Power(base, exp/2);
half = half * half;
if (odd(exp)) then half = half * base;
return half;

}

Analysis of Power:

f(n) =
{

0 n = 1
f(bn/2c) + 1 + n mod 2 n > 1

Solution:
f(n) = blog nc+ β(n)− 1

where β is the number of 1’s in the binary representation of n.
How does this cost compare with the problem size? Is this the best possible?

What if n = 15? What if n stays the same but m changes over many runs? In
general, finding the best set of multiplications is expensive (probably exponential).

Sec. 16.4 Numerical Algorithms 543

16.4.2 Largest Common Factor

The largest common factor of two numbers is the largest integer that divides both
evenly. Observation: If k divides n and m, then k divides n −m. So, f(n,m) =
f(n −m,n) = f(m,n −m) = f(m,n). Observation: There exists k and l such
that

n = km+ l where m > l ≥ 0.

n = bn/mcm+ n mod m.

So, f(n,m) = f(m, l) = f(m,n mod m).

f(n,m) =
{
n m = 0
f(m,n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2bn/mc > n/m

⇒ mbn/mc > n/2

⇒ n− n/2 > n−mbn/mc = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more than 2 iterations. Total cost:

16.4.3 Matrix Multiplication

The standard algorithm for multiplying two n × n matrices requires Θ(n3) time.
It is possible to do better than this by rearranging and grouping the multiplications
in various ways. One example of this is known as Strassen’s matrix multiplication
algorithm. Assume that n is a power of two. In the following, A and B are n×n ar-
rays, while Aij and Bij refer to arrays of size n/2×n/2. Strassen’s algorithm is to

544 Chap. 16 Patterns of Algorithms

multiply the subarrays together in a particular order, as expressed by the following
equation:[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=
[
s1 + s2 − s4 + s6 s4 + s5

s6 + s7 s2 − s3 + s5 − s7

]
.

In other words, the result of the multiplication for an n × n array is obtained by a
series of matrix multiplications and additions for n/2×n/2 arrays. Multiplications
between subarrays also use Strassen’s algorithm, and the addition of two subarrays
requires Θ(n2) time. The subfactors are defined as follows:

s1 = (A12 −A22) · (B21 +B22)

s2 = (A11 +A22) · (B11 +B22)

s3 = (A11 −A21) · (B11 +B12)

s4 = (A11 +A12) ·B22

s5 = A11 · (B12 −B22)

s6 = A22 · (B21 −B11)

s7 = (A21 +A22) ·B11.

1. Show that Strassen’s algorithm is correct.
2. How many multiplications of subarrays and how many additions are required

by Strassen’s algorithm? How many would be required by normal matrix
multiplication if it were defined in terms of subarrays in the same manner?
Show the recurrence relations for both Strassen’s algorithm and the normal
matrix multiplication algorithm.

3. Derive the closed-form solution for the recurrence relation you gave for
Strassen’s algorithm (use Theorem 14.1).

4. Give your opinion on the practicality of Strassen’s algorithm.

Given: n× n matrices A and B. Compute: C = A×B.

cij =
n∑
k=1

aikbkj .

Straightforward algorithm requires Θ(n3) multiplications and additions.
Lower bound for any matrix multiplication algorithm: Ω(n2).
Another Approach — Compute:

m1 = (a12 − a22)(b21 + b22)

Sec. 16.4 Numerical Algorithms 545

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then:

c11 = m1 +m2 −m4 +m6

c12 = m4 +m5

c21 = m6 +m7

c22 = m2 −m3 +m5 −m7

This requires 7 multiplications and 18 additions/subtractions.
Strassen’s Algorithm (1) Trade more additions/subtractions for fewer multipli-

cations in 2 × 2 case. (2) Divide and conquer. In the straightforward implementa-
tion, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
Divide and conquer step: Assume n is a power of 2. Express C = A × B in

terms of n
2 ×

n
2 matrices. By Strassen’s algorithm, this can be computed with 7

multiplications and 18 additions/subtractions of n/2× n/2 matrices.
Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376) Open question: Can matrix multipli-
cation be done in O(n2) time?

546 Chap. 16 Patterns of Algorithms

16.4.4 Random Numbers

Which sequences are random?

• 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
• 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
• 2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:

• Cannot predict the next item: unpredictable.
• Series cannot be described more briefly than to reproduce it: equidistribu-

tion.

There is no such thing as a random number sequence, only “random enough”
sequences. A sequence is pseudorandom if no future term can be predicted in
polynomial time, given all past terms.

Most computer systems use a deterministic algorithm to select pseudorandom
numbers. Linear congruential method: Pick a seed r(1). Then,

r(i) = (r(i− 1)× b) mod t.

Resulting numbers must be in range: What happens if r(i) = r(j)? Must pick
good values for b and t. t should be prime.

Examples:

r(i) = 6r(i− 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

r(i) = 7r(i− 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, ...

r(i) = 5r(i− 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator:

r(i) = 16807r(i− 1) mod 231 − 1.

16.4.5 Fast Fourier Transform

An example of a useful reduction is multiplication through the use of logarithms.
Multiplication is considerably more difficult than addition, because the cost to mul-
tiply two n-bit numbers directly is O(n2), while addition of two n-bit numbers is

Sec. 16.4 Numerical Algorithms 547

O(n). Recall from Section 2.3 that one property of logarithms is

log nm = log n+ logm.

Thus, if taking logarithms and anti-logarithms were cheap, then we could reduce
multiplication to addition by taking the log of the two operands, adding, and then
taking the anti-log of the sum.

Under normal circumstances, taking logarithms and anti-logarithms is expen-
sive, and so this reduction would not be considered practical. However, this reduc-
tion is precisely the basis for the slide rule. The slide rule uses a logarithmic scale
to measure the lengths of two numbers, in effect doing the conversion to logarithms
automatically. These two lengths are then added together, and the inverse logarithm
of the sum is read off another logarithmic scale. The part normally considered ex-
pensive (taking logarithms and anti-logarithms) is cheap because it is a physical
part of the slide rule. Thus, the entire multiplication process can be done cheaply
via a reduction to addition.

Compared to addition, multiplication is hard. In the physical world, addition is
merely concatenating two lengths. Observation:

log nm = log n+ logm.

Therefore,
nm = antilog(log n+ logm).

What if taking logs and antilogs were easy? The slide rule does exactly this! It
is essentially two rulers in log scale. Slide the scales to add the lengths of the two
numbers (in log form). The third scale shows the value for the total length.

Now we will consider multiplying polynomials. A vector a of n values can
uniquely represent a polynomial of degree n− 1

Pa(x) =
n−1∑
i=0

aixi.

Alternatively, a polynomial can be uniquely represented by a list of its values
at n distinct points. Finding the value for a polynomial at a given point is called
evaluation. Finding the coefficients for the polynomial given the values at n points
is called interpolation.

To multiply two n− 1-degree polynomials A and B normally takes Θ(n2) co-
efficient multiplications. However, if we evaluate both polynomials (at the same
points), we can simply multiply the corresponding pairs of values to get the corre-
sponding values for polynomial AB. Process:

548 Chap. 16 Patterns of Algorithms

• Evaluate polynomials A and B at enough points.
• Pairwise multiplications of resulting values.
• Interpolation of resulting values.

This can be faster than Θ(n2) if a fast way could be found to do evalua-
tion/interpolation of 2n− 1 points. Normally this takes Θ(n2) time. (Why?)

Example 16.2 Polynomial A: x2 + 1. Polynomial B: 2x2 − x+ 1. Poly-
nomial AB: 2x4 − x3 + 3x2 − x+ 1.

Note that evaluating a polynomial at 0 is easy. If we evaluate at 1 and
-1, we can share a lot of the work between the two evaluations. Can we find
enough such points to make the process cheap?

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we also need
to interpolate the 5 values to get the coefficients back.

Observation: In general, we can write Pa(x) = Ea(x) + Oa(x) where Ea is
the even powers and Oa is the odd powers. So,

Pa(x) =
n/2−1∑
i=0

a2ix
2i +

n/2−1∑
i=0

a2i+1x
2i+1

The significance is that when evaluating the pair of values x and −x, we get

Ea(x) +Oa(x) = Ea(x)−Oa(−x)

Oa(x) = −Oa(−x)

Thus, we only need to compute the E’s and O’s once instead of twice to get
both evaluations.

The key to fast polynomial multiplication is finding the right points to use
for evaluation/interpolation to make the process efficient. Complex number z is
a primitive nth root of unity if

1. zn = 1 and

Sec. 16.4 Numerical Algorithms 549

2. zk 6= 1 for 0 < k < n.

z0, z1, ..., zn−1 are the nth roots of unity. Example: For n = 4, z = i or z = −i.
Identity: eiπ = −1.

In general, zj = e2πij/n = −12j/n. Significance: We can find as many points
on the circle as we need.

Define an n× n matrix Az with row i and column j as

Az = (zij).

Example: n = 4, z = i:

Az =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

Let a = [a0, a1, ..., an−1]T be a vector. We can evaluate the polynomial at the nth
roots of unity:

Fz = Aza = b.

bi =
n−1∑
k=0

akz
ik.

For n = 8, z =
√
i. So,

Az =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i

1 −i
√
i −i −

√
i −1 i

√
i i

√
i

We still have two problems: We need to be able to do this fast. Its still n2

multiplies to evaluate. If we multiply the two sets of evaluations (cheap), we still
need to be able to reverse the process (interpolate).

The interpolation step is nearly identical to the evaluation step.

F−1
z = A−1

z b′ = a′.

550 Chap. 16 Patterns of Algorithms

What is A−1
z ? This turns out to be simple to compute.

A−1
z =

1
n
A1/z.

In other words, do the same computation as before but substitute 1/z for z (and
multiply by 1/n at the end). So, if we can do one fast, we can do the other fast.

An efficient divide and conquer algorithm exists to perform both the evalua-
tion and the interpolation in Θ(n log n) time. This is called the Discrete Fourier
Transform (DFT). It is a recursive function that decomposes the matrix multipli-
cations, taking advantage of the symmetries made available by doing evaluation at
the nth roots of unity.

Polynomial multiplication of A and B:
• Represent an n− 1-degree polynomial as 2n− 1 coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

• Perform DFT on representations for A and B
• Pairwise multiply results to get 2n− 1 values.
• Perform inverse DFT on result to get 2n− 1 degree polynomial AB.

Fourier_Transform(double *Polynomial, int n) {
// Compute the Fourier transform of Polynomial
// with degree n. Polynomial is a list of
// coefficients indexed from 0 to n-1. n is
// assumed to be a power of 2.
double Even[n/2], Odd[n/2], List1[n/2], List2[n/2];

if (n==1) return Polynomial[0];

for (j=0; j<=n/2-1; j++) {
Even[j] = Polynomial[2j];
Odd[j] = Polynomial[2j+1];

}
List1 = Fourier_Transform(Even, n/2);
List2 = Fourier_Transform(Odd, n/2);
for (j=0; j<=n-1, J++) {

Imaginary z = pow(E, 2*i*PI*j/n);
k = j % (n/2);
Polynomial[j] = List1[k] + z*List2[k];

}
return Polynomial;

}

Sec. 16.5 Further Reading 551

This just does the transform on one of the two polynomials. The full process is:
1. Transform each polynomial.
2. Multiply the resulting values (O(n) multiplies).
3. Do the inverse transformation on the result.

16.5 Further Reading

For further information on Skip Lists, see “Skip Lists: A Probabilistic Alternative
to Balanced Trees” by William Pugh [Pug90].

16.6 Exercises

16.1 Solve Towers of Hanoi using a dynamic programming algorithm.
16.2 There are six permutations of the lines

for (int k=0; k<G.n(); k++)
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)

in floyd’s algorithm. Which ones give a correct algorithm?
16.3 Show the result of running Floyd’s all-pairs shortest-paths algorithm on the

graph of Figure 11.25.
16.4 The implementation for Floyd’s algorithm given in Section 16.2.2 is ineffi-

cient for adjacency lists because the edges are visited in a bad order when
initializing array D. What is the cost of of this initialization step for the adja-
cency list? How can this initialization step be revised so that it costs Θ(|V|2)
in the worst case?

16.5 State the greatest possible lower bound that you can for the all-pairs shortest-
paths problem, and justify your answer.

16.6 Show the Skip List that results from inserting the following values. Draw
the Skip List after each insert. With each value, assume the depth of its
corresponding node is as given in the list.

value depth
5 2
20 0
30 0
2 0
25 1
26 3
31 0

552 Chap. 16 Patterns of Algorithms

16.7 If we had a linked list that would never be modified, we can use a simpler
approach than the Skip List to speed access. The concept would remain the
same in that we add additional pointers to list nodes for efficient access to the
ith element. How can we add a second pointer to each element of a singly
linked list to allow access to an arbitrary element in O(log n) time?

16.8 What is the expected (average) number of pointers for a Skip List node?
16.9 Write a function to remove a node with given value from a Skip List.

16.10 Write a function to find the ith node on a Skip List.

16.7 Projects

16.1 Complete the implementation of the Skip List-based dictionary begun in Sec-
tion 16.3.1.

16.2 Implement both a standard Θ(n3) matrix multiplication algorithm and Stras-
sen’s matrix multiplication algorithm (see Exercise 14.16.4.3). Using empir-
ical testing, try to estimate the constant factors for the runtime equations of
the two algorithms. How big must n be before Strassen’s algorithm becomes
more efficient than the standard algorithm?

